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ON UNIQUENESS OF THE nTH ORDER TENSOR
DECOMPOSITION INTO RANK-1 TERMS WITH LINEAR

INDEPENDENCE IN ONE MODE∗

ALWIN STEGEMAN†

Abstract. We study uniqueness of the decomposition of an nth order tensor (also called n-
way array) into a sum of R rank-1 terms (where each term is the outer product of n vectors).
This decomposition is also known as Parafac or Candecomp, and a general uniqueness condition
for n = 3 has been obtained by Kruskal in 1977 [Linear Algebra Appl., 18 (1977), pp. 95–138].
More recently, Kruskal’s uniqueness condition has been generalized to n ≥ 3, and less restrictive
uniqueness conditions have been obtained for the case where the vectors of the rank-1 terms are
linearly independent in (at least) one of the n modes. For this case, only n = 3 and n = 4 have
been studied. We generalize these results by providing a framework of analysis for arbitrary n ≥ 3.
Our results include necessary, sufficient, necessary and sufficient, and generic uniqueness conditions.
For the sufficient uniqueness conditions, the rank of a matrix needs to be checked. The generic
uniqueness conditions have the form of a bound on R in terms of the dimensions of the tensor to be
decomposed.
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1. Introduction. Tensors of order n are defined on the outer product of n linear
spaces, S�, 1 ≤ � ≤ n. Once bases of spaces S� are fixed, they can be represented
by n-way arrays. For simplicity, tensors are usually assimilated with their array
representation.

We consider the nth order tensor decomposition of the form

X =

R∑
r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(n)r ,(1.1)

where X ∈ RI1×I2×···×In is an nth order tensor (or n-way array), a
(j)
r ∈ RIj are

vectors, and ◦ denotes the outer vector product. For vectors a(1), . . . , a(n), the outer

vector product a(1) ◦ · · · ◦ a(n) is an nth order tensor with entries a
(1)
i1

a
(2)
i2

· · · a(n)in
.

We refer to X in (1.1) as having n modes, and the j in a
(j)
r corresponds to mode j.

Note that when the modes of X are permuted in (1.1), the vectors a
(j)
r are permuted

identically.

We will denote vectors as x, matrices (2nd order tensors, 2-way arrays) as X, and
higher-order tensors (multiway arrays) as X. We use ⊗ to denote the usual Kronecker
product, and � denotes the (columnwise) Khatri–Rao product, i.e., for matrices X
and Y with R columns, X � Y = [x1 ⊗ y1|, . . . , |xR ⊗ yR]. The transpose of X is
denoted as XT , and diag(x) denotes the diagonal matrix with the entries in vector
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x on its diagonal. We refer to a matrix as having full column rank if its rank equals
its number of columns. Analogously, a matrix has full row rank if its rank equals its
number of rows.

An nth order tensor has rank 1 if it can be written as the outer product of
n vectors. The rank of an nth order tensor X is defined as the smallest number
of rank-1 tensors whose sum equals X. Hence, (1.1) decomposes X into R rank-1
terms. Hitchcock [12, 13] introduced tensor rank and the related tensor decomposition
(1.1). The same decomposition was proposed independently by Carroll and Chang
[3] and Harshman [11] for component analysis of nth order tensors. They named it
Candecomp and Parafac, respectively.

For a given nth order tensor and number R of rank-1 components, a best fitting
decomposition (1.1) is usually found by an iterative algorithm. The most well-known
algorithm is alternating least squares. A comparison of algorithms for n = 3 can be
found in Tomasi and Bro [38]. Note that a best fitting decomposition is a best rank-R
approximation of the tensor.

Real-valued applications of tensor decompositions occur in psychology and chem-
istry; see Kroonenberg [20], Kiers and Van Mechelen [17], and Smilde, Bro, and Geladi
[29]. Complex-valued tensor decompositions are used in, e.g., signal processing and
telecommunications research; see Sidiropoulos, Giannakis, and Bro [27], Sidiropoulos,
Bro, and Giannakis [28], and De Lathauwer and Castaing [7]. Applications of the ten-
sor decomposition (1.1) for n ≥ 4 can be found in chemometrics (Durell et al. [10]),
and neuroimaging (Andersen and Rayens [2] and Mørup et al. [24]). Also, for n = 4,
the tensor decomposition (1.1) describes the basic structure of 4th order cumulants
of multivariate data on which a lot of algebraic methods for independent component
analysis (ICA) are based (Comon [4], De Lathauwer, De Moor, and Vandewalle [5],
and Hyvärinen, Karhunen, and Oja [14]). ICA algorithms explicitly using (1.1) can
be found in De Lathauwer, Castaing, and Cardoso [8] (for n = 4) and in Karfoul,
Albera, and De Lathauwer [16] (for n = 6). For a general overview of applications
of the decomposition (1.1) and related decompositions, see Kolda and Bader [18] or
Acar and Yener [1].

A drawback of computing a best fitting tensor decomposition (1.1) is that an
optimal solution may not exist. Indeed, a tensor may not have a best rank-R ap-
proximation. This is due to the fact that the set of tensors of rank at most R is not
closed; see De Silva and Lim [9]. In such cases, diverging components (i.e., close to
linear dependence and large in magnitude) occur while running an iterative algorithm
designed to find a best rank-R approximation; see Krijnen, Dijkstra, and Stegeman
[19]. This phenomenon is also known as “degeneracy”; see Kruskal, Harshman, and
Lundy [22], and Stegeman [30, 31, 32, 33]. This problem can be fixed by includ-
ing interaction terms in the decomposition; see Stegeman and De Lathauwer [37] for
the case n = 3 and I3 = 2, and Rocci and Giordani [25] for the case n = 3 and
R = 2.

An attractive feature of the decomposition (1.1) is that the vectors a
(j)
r are

unique under mild conditions. We define uniqueness of (1.1) as follows. Let A(j) =

[a
(j)
1 |a(j)2 | . . . |a(j)R ] denote the jth component matrix. Hence, matrix A(j) has size

Ij ×R. We denote an nth order decomposition (1.1) as (A(1), . . . ,A(n)).

Definition 1.1. The decomposition (A(1), . . . ,A(n)) is called unique up to
permutation and scaling if any alternative decomposition (B(1), . . . ,B(n)) satisfies
B(j) = A(j)ΠΛj, j = 1, . . . , n, with Π an R × R permutation matrix, and Λj non-
singular diagonal matrices such that

∏n
j=1 Λj = IR.
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Hence, an nth order decomposition is unique up to permutation and scaling if the
only ambiguities it contains are the permutation of the R rank-1 components, and
the scaling of the n vectors constituting each rank-1 component.

The classical uniqueness condition for n = 3 is due to Kruskal [21]. Kruskal’s
condition relies on a particular concept of matrix rank that he introduced, which
has been named k-rank after him. Specifically, the k-rank of a matrix is the largest
number x such that every subset of x columns of the matrix is linearly independent.
We denote the k-rank of a matrix A as kA. For a decomposition (A(1),A(2),A(3)),
Kruskal [21] proved that

2R+ 2 ≤ kA(1) + kA(2) + kA(3)(1.2)

is a sufficient condition for uniqueness up to permutation and scaling. A more con-
densed and accessible proof of (1.2) was given by Stegeman and Sidiropoulos [36].
Kruskal’s uniqueness condition was generalized to n ≥ 3 by Sidiropoulos and Bro
[26]. For a decomposition (A(1), . . . ,A(n)) the uniqueness condition becomes

2R+ (n− 1) ≤
n∑

j=1

kA(j) .(1.3)

By comparing (1.2) and (1.3), it can be seen that the uniqueness condition becomes
less restrictive as the order n increases. Indeed, when increasing n by one the right-
hand side of (1.3) increases with an additional k-rank while the left-hand side increases
by one only.

For n = 3 and n = 4, less restrictive uniqueness conditions have been obtained
for the case where (at least) one of the component matrices A(j) has rank R, i.e., the

vectors a
(j)
r , r = 1, . . . , R, are linearly independent in (at least) one mode j. In this

paper, we consider this case for arbitrary order n ≥ 3, and prove generalizations of
existing uniqueness conditions. The next section contains a roadmap of uniqueness
results in this paper, and indicates the links with existing uniqueness results. The
organization of this paper will be explained at the end of the next section.

2. Roadmap of uniqueness results. Here, we present an overview of both
existing and our new uniqueness conditions for a decomposition (A(1), . . . ,A(n)) with
rank(A(n)) = R. Also, our generalization of the approaches of Jiang and Sidiropoulos
[15] and De Lathauwer [6] is discussed. First, however, we introduce some definitions.
A mode-j vector of an I1 × I2 × · · · × In tensor is defined as an Ij × 1 vector that
is obtained by varying the jth index and keeping the other indices fixed. A mode-
j matrix unfolding of a tensor is defined as a matrix containing all mode-j vectors
as columns. For the decomposition (A(1), . . . ,A(n)) in (1.1), we define the mode-j
matrix unfolding as

⎛
⎝ n⊙

i�=j

A(i)

⎞
⎠ (A(j))T ,(2.1)

where
⊙

denote a series of (columnwise) Khatri–Rao products.
We denote an alternative decomposition as (B(1), . . . ,B(n)), and focus on equating

the mode-n matrix unfoldings of the two decompositions:

(A(1) � · · · �A(n−1)) (A(n))T = (B(1) � · · · �B(n−1)) (B(n))T .(2.2)
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For n = 3, a necessary uniqueness condition is that the Khatri–Rao product of any
two component matrices must have full column rank; see Liu and Sidiropoulos [23].
In Lemma 3.1, we prove a generalization of this necessary uniqueness condition for
arbitrary order n ≥ 3. In particular, (A(1)�· · ·�A(n−1)) must have full column rank
R. We assume this to be true.

Since A(n) has rank R and we assume that (A(1) � · · · �A(n−1)) has rank R, it
follows that also the right-hand side of (2.2) has rank R. Hence, B(n) has rank R and
(B(1) � · · · � B(n−1)) has rank R. Moreover, A(n) and B(n) have the same column
space, which is also true for (A(1) � · · · �A(n−1)) and (B(1) � · · · �B(n−1)).

Next, we prove that if there holds B(n) = A(n)ΠΛn for a permutation matrix
Π and a nonsingular diagonal matrix Λn, then (A(1), . . . ,A(n)) is unique up to per-
mutation and scaling. Hence, if A(n) is unique up to permutation and scaling, then
this is true for the complete nth order decomposition. Our proof of this is along the
following lines. Under uniqueness of A(n), (2.2) becomes

(A(1) � · · · �A(n−1)) (A(n))T = (B(1) � · · · �B(n−1))Λn Π
T (A(n))T .(2.3)

Since A(n) has full column rank, this implies

(B(1) � · · · �B(n−1)) = (A(1) � · · · �A(n−1))ΠΛ−1
n .(2.4)

In Lemma 4.1, we show that this implies B(j) = A(j)ΠΛj, j = 1, . . . , n − 1, for

nonsingular diagonal matrices Λj such that
∏n−1

j=1 Λj = Λ−1
n . By Definition 1.1, this

implies uniqueness of the decomposition (A(1), . . . ,A(n)). For n = 3, this is shown
by Jiang and Sidiropoulos [15].

Hence, the key step is to show uniqueness of A(n). For this, we make use of
Kruskal’s [21] permutation lemma, which is formulated as Lemma 2.1 below. Let ω(·)
denote the number of nonzero elements of a vector.

Lemma 2.1 (permutation lemma). Let A and B be two I × R matrices and let
kA ≥ 1. Suppose the following condition holds: for any vector x such that ω(xTB) ≤
R−rank(B)+1, we have ω(xTA) ≤ ω(xTB). Then there exists a permutation matrix
Π and a nonsingular diagonal matrix Λ such that B = AΠΛ.

As observed above, we have rank(B(n)) = R in any alternative decomposition.
Hence, in order to conclude uniqueness ofA(n) by the permutation lemma it suffices to
show that for any vector x such that ω(xTB(n)) ≤ 1 we have ω(xTA(n)) ≤ ω(xTB(n)).
SinceA(n) andB(n) have the same column space, ω(xTB(n)) = 0 implies ω(xTA(n)) =
0. Hence, the condition of the permutation lemma becomes the following: for any
vector x such that ω(xTB(n)) = 1 we have ω(xTA(n)) ≤ 1.

Let x be a vector with ω(xTB(n)) = 1. By (2.2), we have

(A(1) � · · · �A(n−1)) (A(n))Tx = (B(1) � · · · �B(n−1)) (B(n))Tx .(2.5)

Since ω(xTB(n)) = 1, the right-hand side of (2.5) is proportional to one column of
(B(1) � · · · � B(n−1)), and can be written as (f1 ⊗ · · · ⊗ fn−1) for some vectors fj ,
j = 1, . . . , n − 1. We write d = (A(n))Tx. Since A(n) has full column rank, we may
treat d as an arbitrary vector. It follows that a sufficient condition for uniqueness of
the nth order decomposition is as follows: for any vector d = (d1, d2, . . . , dr)

T

(A(1) � · · · �A(n−1))d = (f1 ⊗ · · · ⊗ fn−1) implies ω(d) ≤ 1 .(2.6)

In Theorem 4.2, we show that (2.6) is also necessary for uniqueness. For n = 3, this
is shown by Jiang and Sidiropoulos [15].
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Condition (2.6) is not easy to check. For n = 3, Jiang and Sidiropoulos [15] show
that (2.6) is equivalent to

U(2)

⎛
⎜⎜⎜⎝

d1d2
d1d3
...

dR−1dR

⎞
⎟⎟⎟⎠ = 0 implies ω(d) ≤ 1 ,(2.7)

where the matrix U(2) depends on (A(1),A(2)). Let d̃ = (d1d2, d1d3, . . . , dR−1dR)
T .

From the form of d̃ it can be seen that d̃ = 0 implies ω(d) ≤ 1. This shows that
U(2) having full column rank is sufficient for condition (2.7) to hold. This condition
is easy to check.

In Theorem 4.4, we show how to obtain a matrix U(n−1) from (A(1), . . . ,A(n−1))
such that

U(n−1) d̃ = 0 implies ω(d) ≤ 1(2.8)

is equivalent to (2.6) for arbitrary n ≥ 3. Moreover, in Corollary 4.5, we show that
U(n−1) having full column rank is sufficient for uniqueness of A(n) and, hence, for
uniqueness of the complete nth order decomposition (A(1), . . . ,A(n)). This generalizes
the easy-to-check condition for n = 3 of [15].

For n = 3 and n = 4, this sufficient uniqueness condition (i.e., U(n−1) having full
column rank) is obtained independently by De Lathauwer [6]. Moreover, for n = 3,
[6] shows that for generic (A(1),A(2)) the matrix U(2) has full column rank if

R(R− 1)

2
≤ I1(I1 − 1)I2(I2 − 1)

4
.(2.9)

Also, for n = 4, [6] shows that for generic (A(1),A(2),A(3)) the matrix U(3) has full
column rank if

R(R− 1)

2
≤ I1I2I3 (3 I1I2I3 − I1I2 − I1I3 − I2I3 − I1 − I2 − I3 + 3)

8
.(2.10)

We refer to these types of uniqueness conditions as generic uniqueness conditions. It
was observed by Stegeman, Ten Berge, and De Lathauwer [35] that (2.9) is equivalent
to U(2) being a square or vertical matrix (after redundant rows have been deleted).
The latter authors also give an alternative proof of the generic uniqueness condi-
tion (2.9).

Stegeman [34] shows that Kruskal’s uniqueness condition (1.2) with kA(3) = R
implies that U(2) has full column rank. Hence, the latter condition is less restrictive.
Moreover, for kA(3) = R [34] proves several Kruskal-type uniqueness conditions that
are less restrictive than (1.2) but more restrictive than U(2) having full column rank.

From his constructive proofs of the deterministic uniqueness conditions for n = 3
and n = 4, De Lathauwer [6] shows that the decomposition (1.1) can be obtained
algebraically from a simultaneous matrix diagonalization.

In Theorem 5.5, we use our derivation of the matrix U(n−1) to prove generic
uniqueness conditions for arbitrary n ≥ 3 that generalize conditions (2.9) and (2.10)
of De Lathauwer [6]. Our approach is as follows. We identify rows of the matrix
U(n−1) that are redundant (i.e., can be deleted without affecting the row space) for
any (A(1), . . . ,A(n−1)). The matrix U(n−1) has R(R− 1)/2 columns, and it can only



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIQUENESS OF nTH ORDER TENSOR DECOMPOSITIONS 2503

have full column rank ifR(R−1)/2 is less than or equal to the number of nonredundant
rows. For n = 3, this yields condition (2.9), as was observed by [35]. For n = 4, we
show that this yields condition (2.10). For arbitrary n ≥ 3, we prove an expression
for the number of nonredundant rows of U(n−1). Our generic uniqueness conditions
state that, for generic (A(1), . . . ,A(n−1)), the matrix U(n−1) has full column rank if
R(R− 1)/2 is less than or equal to the number of nonredundant rows.

Our results provide easy-to-check uniqueness conditions for the decomposition

(1.1) in case the vectors a
(j)
r , r = 1, . . . , R, are linearly independent in (at least) one

mode j. Moreover, our proofs offer more insight into uniqueness of tensor decompo-
sitions into rank-1 terms for arbitrary order n ≥ 3.

This paper is organized as follows. In section 3 we present generalizations of
well-known necessary uniqueness conditions for n = 3. In section 4 we generalize
the approach of Jiang and Sidiropoulos [15] to arbitrary order n ≥ 3 and obtain our
uniqueness conditions. In section 5, we generalize the generic uniqueness conditions
of De Lathauwer [6] by identifying redundant rows of U(n−1) for arbitrary n ≥ 3.
Finally, section 6 contains a discussion of our results.

Although we consider the real-valued nth order tensor decomposition, all pre-
sented uniqueness results can easily be translated to the complex-valued case. To do
this, we must keep in mind that our vectors live in a complex vector space C

m, with
inner product 〈x,y〉 = yHx and norm ||x|| = √〈x,x〉, where H denotes the Hermitian
or conjugated transpose. As in Rm, vectors x and y are orthogonal when 〈x,y〉 = 0.
Also, vectors x1, . . . ,xq ∈ Cm are linearly independent when a1 x1 + · · ·+ aq xq = 0
implies a1 = · · · = aq = 0 for scalars a1, . . . , aq ∈ C. Moreover, the determinant
of a complex matrix is defined identical to the determinant of a real matrix, and its
relation to the matrix rank is identical. The considerations above imply that, in order
to translate our uniqueness proofs to the complex-valued case, we must replace the or-
dinary transpose T by H where orthogonality is involved; for example, see Lemma 2.1
and the discussion following it. However, in those cases where the transpose is due
to the formulation of the decomposition such as in (2.1), (2.2), (2.3), the transpose
should not be changed. See [27] for a proof of Kruskal’s condition (1.2) for the com-
plex case, and [15] for a proof of Kruskal’s permutation lemma (Lemma 2.1) for the
complex case. Moreover, all uniqueness results of [15] are proven for the complex case.

3. Necessary uniqueness conditions for the nth order decomposition.
Here, we present necessary uniqueness conditions for a decomposition (A(1), . . . ,A(n)).
These are obtained by generalizing necessary uniqueness conditions for n = 3, and
serve to illustrate differences and similarities between the often studied case n = 3
and the case n ≥ 4.

For n = 3, a necessary uniqueness condition is that the Khatri–Rao product of
any two component matrices must have full column rank; see Liu and Sidiropou-
los [23]. The next lemma generalizes this condition to an nth order decomposition
(A(1), . . . ,A(n)). Recall the definition of the mode-j matrix unfolding from (2.1).

Lemma 3.1. If rank(
⊙n

i�=j A
(i)) < R for some j ∈ {1, . . . , n}, n ≥ 3, then the de-

composition (A(1), . . . ,A(n)) is not unique up to permutation and scaling. Moreover,
an alternative decomposition into R− 1 rank-1 terms exists.

Proof. The proof is analogous to the proof in Stegeman and Sidiropoulos [36]
for n = 3. Suppose (

⊙n
i�=j A

(i))x = 0 for some nonzero vector x. Then the mode-j
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matrix unfolding of the decomposition satisfies⎛
⎝ n⊙

i�=j

A(i)

⎞
⎠ (A(j))T =

⎛
⎝ n⊙

i�=j

A(i)

⎞
⎠ (A(j) + yxT )T(3.1)

for any vector y. Hence, in the decomposition we may replace A(j) by (A(j) + yxT )
for any vector y. This proves nonuniqueness. Moreover, we can choose y such that
one column, say column p, of (A(j) + yxT ) vanishes. Hence, a decomposition into

R − 1 rank-1 terms can be obtained by deleting columns a
(i)
p from each component

matrix A(i), i 
= j, and replacing A(j) by (A(j) + yxT ) with its all-zero column p
deleted.

From Lemma 3.1 it is clear that an all-zero column in one of the component
matrices (which thus has k-rank zero) implies nonuniqueness of the decomposition.
For n = 3, it is well known that a component matrix with k-rank one (proportional
columns) implies nonuniqueness; see, e.g., Stegeman and Sidiropoulos [36]. However,
as observed by Sidiropoulos and Bro [26], for n ≥ 4 component matrices may have
k-rank one while the decomposition is unique. Indeed, suppose a 3rd order decom-
position satisfies Kruskal’s condition (1.2). Adding a fourth component matrix with
k-rank one now yields a 4th order decomposition that satisfies the uniqueness condi-
tion (1.3) for n = 4.

The next lemma generalizes the necessary uniqueness condition for n = 3 of
k-rank at least two to arbitrary order n ≥ 3.

Lemma 3.2. If the decomposition (A(1), . . . ,A(n)), n ≥ 3, contains n − 2 dis-
tinct component matrices that have columns s and t proportional, s 
= t, then the
decomposition is not unique up to permutation and scaling.

Proof. The proof is analogous to the proof in Stegeman and Sidiropoulos [36] for

n = 3. Let a
(j)
s = α(j)a

(j)
t for j = 1, . . . , n − 2. For the rank-1 terms s and t of the

decomposition we have

a(1)s ◦ · · · ◦ a(n)s + a
(1)
t ◦ · · · ◦ a(n)t = a

(1)
t ◦ · · · ◦ a(n−2)

t ◦ [α̃ a(n−1)
s |a(n−1)

t ] [a(n)s |a(n)t ]T

= a
(1)
t ◦ · · · ◦ a(n−2)

t ◦ [α̃ a(n−1)
s |a(n−1)

t ]U([a(n)s |a(n)t ]U−T )T ,(3.2)

with α̃ =
∏n−2

j=1 α(j), and U a nonsingular 2× 2 matrix. If U is not the product of a
permutation matrix and a nonsingular diagonal matrix, then (3.2) implies nonunique-
ness.

Note that in the proof of Lemma 3.2 the nonuniqueness of the matrix decompo-
sition (2nd order) is used. Since the nth order decomposition is unique under mild
conditions for n ≥ 3, it is not possible to write an analogous proof of nonuniqueness
for the case where less than n− 2 distinct component matrices have columns s and t
proportional.

4. Uniqueness conditions for the nth order decomposition. Here, we
present uniqueness conditions for a decomposition (A(1), . . . ,A(n)) with rank(A(n)) =
R. We denote an alternative decomposition as (B(1), . . . ,B(n)). It is assumed that
the necessary uniqueness conditions of Lemmas 3.1 and 3.2 hold. Our approach is
a generalization of Jiang and Sidiropoulos [15], and focuses on equating the mode-n
matrix unfoldings of the two decompositions as in (2.2).

The next lemma shows that we need only prove uniqueness of A(n) to obtain
uniqueness of the complete decomposition (A(1), . . . ,A(n)).
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Lemma 4.1. Let (A(1), . . . ,A(n)), n ≥ 3, be a decomposition with rank(A(n)) =
R. If for any alternative decomposition (B(1), . . . ,B(n)) there holds B(n) = A(n)ΠΛn

for a permutation matrix Π and a nonsingular diagonal matrix Λn, then (A(1), . . . ,
A(n)) is unique up to permutation and scaling.

Proof. The proof is analogous to Jiang and Sidiropoulos [15] for n = 3. As stated
in section 2, under uniqueness of A(n), (2.2) implies (2.4). Hence, each column of
(B(1)�· · ·�B(n−1)) is a rescaled column of (A(1)�· · ·�A(n−1)). Each such column
r can be interpreted as a vectorized (n− 1)th order tensor that is the outer product
of n− 1 vectors that are the rth columns of the n− 1 component matrices. Since the
component matrices A(1), . . . ,A(n−1) do not contain all-zero columns by assumption
(otherwise A(n) would not be unique), it now follows that B(j) = A(j)ΠΛj , j =
1, . . . , n − 1, for nonsingular diagonal matrices Λj . Since (A(1) � · · · �A(n−1)) has
full column rank (otherwise A(n) would not be unique; see Lemma 3.1), (2.4) implies

that
∏n−1

j=1 Λj = Λ−1
n . Hence, the decomposition (A(1), . . . ,A(n)) is unique up to

permutation and scaling.
In the remaining part of this section, we focus on the uniqueness of A(n). As

explained in section 2, we use Kruskal’s [21] permutation lemma, which is formulated
as Lemma 2.1. In section 2, we derived the sufficient uniqueness condition (4.1). The
next theorem shows that this condition is not only sufficient but also necessary for
uniqueness. For n = 3, this result is due to Jiang and Sidiropoulos [15].

Theorem 4.2. Let (A(1), . . . ,A(n)), n ≥ 3, be a decomposition with rank(A(n)) =
R. Then the decomposition is unique up to permutation and scaling if and only if for
any vector d

(A(1) � · · · �A(n−1))d = (f1 ⊗ · · · ⊗ fn−1) implies ω(d) ≤ 1 .(4.1)

Proof. Sufficiency follows from the analysis in section 2. Condition (4.1) im-
plies uniqueness of A(n) via the permutation lemma. Uniqueness of the complete
decomposition follows from Lemma 4.1.

The proof of necessity is as follows. Without loss of generality we set A(n) = IR.
Suppose (A(1) � · · · �A(n−1))d = (f1 ⊗ · · · ⊗ fn−1) for some vector d with ω(d) ≥ 2.
Let dp 
= 0, and set B(j) equal to A(j) with column p replaced by fj , j = 1, . . . , n− 1.

Then (a
(1)
p ⊗ · · · ⊗ a

(n−1)
p ) = (B(1) � · · · �B(n−1))g for some vector g with ω(g) ≥ 2.

Let B(n) be equal to IR with row p replaced by gT . We have

(A(1) � · · · �A(n−1)) = (B(1) � · · · �B(n−1)) (B(n))T ,(4.2)

which shows that (B(1), . . . ,B(n)) is an alternative decomposition to (A(1), . . . ,A(n−1),
IR). Since the alternative component matrices B(j) are not rescaled column permu-
tations of the original component matrices A(j), this shows nonuniqueness of the
decomposition.

Condition (4.1) is difficult to check. Next, we prove an equivalent uniqueness con-
dition that is a generalization of (2.7). The left-hand side of (4.1) can be interpreted
as a vectorized (n−1)th order tensor Y that is a linear combination (with coefficients
in d) of R rank-1 tensors specified by (A(1), . . . ,A(n−1)). Hence,

Y =

R∑
r=1

dr (a
(1)
r ◦ · · · ◦ a(n−1)

r ) .(4.3)

The right-hand side of (4.1) can be interpreted as a vectorized (n− 1)th order tensor
of rank at most 1 (since it is the outer product of n − 1 vectors). Condition (4.1) is
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equivalent to

rank(Y) ≤ 1 implies ω(d) ≤ 1 .(4.4)

Condition (4.4) states that if Y has rank at most 1, then at most one coefficient in
the linear combination (4.3) can be nonzero.

An mth order tensor has rank at most 1 if and only if its m matrix unfoldings
have rank at most 1. This is proven in Lemma 4.6, which is postponed for ease of
presentation. We apply this rank-1 criterion to Y to obtain a matrix U(n−1) that is
a generalization of U(2) in condition (2.7). For this, we need the following definition
of a matrix containing all distinct 2× 2 minors of a given matrix.

Definition 4.3. For an I ×R matrix A, let the I(I − 1)/2×R(R− 1)/2 matrix
m(A) have entries

det

(
aig aih
ajg ajh

)
, with 1 ≤ i < j ≤ I and 1 ≤ g < h ≤ R ,(4.5)

where in each row of m(A) the value of (i, j) is fixed, and in each column of m(A)
the value of (g, h) is fixed. The columns of m(A) are ordered such that index g runs
slower than h. The rows of m(A) are ordered such that index i runs slower than
j.

It is clear that rank(A) ≤ 1 is equivalent to m(A) = O.

The tensor Y has mode-j matrix unfolding, (
⊙n−1

i�=j A(i)) diag(d) (A(j))T , j =
1, . . . , n− 1; see (2.1). By Lemma 4.6, condition (4.4) is equivalent to

(4.6)

m

⎛
⎝
⎛
⎝n−1⊙

i�=j

A(i)

⎞
⎠ diag(d) (A(j))T

⎞
⎠ = O, j = 1, . . . , n− 1, implies ω(d) ≤ 1.

For n = 3, Jiang and Sidiropoulos [15] show that m(A(1) diag(d) (A(2))T ) = O can
be rewritten as m(A(1)) � m(A(2)) d̃ = 0, where d̃ = (d1d2, d1d3, . . . , dR−1dR)

T .

Analogously, we obtain that m((
⊙n−1

i�=j A(i)) diag(d) (A(j))T ) = O can be rewritten as

m

⎛
⎝n−1⊙

i�=j

A(i)

⎞
⎠ � m

(
A(j)

)
d̃ = 0 .(4.7)

Note that each row of (4.7) corresponds to a distinct 2×2 minor of the mode-j matrix
unfolding of Y. The system (4.7) contains all distinct 2 × 2 minors of this matrix
unfolding and, hence, is equivalent to the matrix unfolding having rank at most 1.
Next, we combine the equations (4.7), j = 1, . . . , n−1, in one system of equations. Let

U
(n−1)
j = m

⎛
⎝n−1⊙

i�=j

A(i)

⎞
⎠ � m

(
A(j)

)
, j = 1, . . . , n− 1 ,(4.8)

and define

U(n−1) =

⎡
⎢⎢⎣

U
(n−1)
1
...

U
(n−1)
n−1

⎤
⎥⎥⎦ .(4.9)

This yields the following equivalent necessary and sufficient uniqueness condition,
which is a generalization of (2.7).
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Theorem 4.4. Let (A(1), . . . ,A(n)), n ≥ 3, be a decomposition with rank(A(n)) =
R. Then the decomposition is unique up to permutation and scaling if and only if for
any vector d

U(n−1) d̃ = 0 implies ω(d) ≤ 1 .(4.10)

Proof. The analysis above shows that U(n−1) d̃ = 0 is equivalent to all n − 1
matrix unfoldings of Y having rank at most 1. By Lemma 4.6, this is equivalent
to rank(Y) ≤ 1. Hence, condition (4.10) is equivalent to condition (4.4), which was
shown to be equivalent to condition (4.1). Theorem 4.2 completes the proof.

From the form of d̃ it can be seen that d̃ = 0 implies ω(d) ≤ 1. It follows
that a sufficient condition for uniqueness is that U(n−1) has full column rank, i.e.,
rank(U(n−1)) = R(R− 1)/2. We formulate this as a corollary.

Corollary 4.5. Let (A(1), . . . ,A(n)), n ≥ 3, be a decomposition with rank
(A(n)) = R. Then the decomposition is unique up to permutation and scaling if
U(n−1) has full column rank.

Theorems 4.2 and 4.4 and Corollary 4.5 are generalizations of the uniqueness
conditions of Jiang and Sidiropoulos [15] for n = 3. Corollary 4.5 was independently
proven by De Lathauwer [6] for n = 3 and n = 4. Note that U(n−1) having full
column rank is an easy-to-check uniqueness condition compared to condition (4.1).

It remains to formulate and prove Lemma 4.6.
Lemma 4.6. An mth order tensor X has rank at most 1 if and only if its mode-j

matrix unfolding has rank at most 1, j = 1, . . . ,m, m ≥ 2.
Proof. Suppose X has rank at most 1. Then we have the representation

X = a(1) ◦ · · · ◦ a(m)(4.11)

for some vectors a(j), j = 1, . . . ,m. The mode-j matrix unfolding of X is given by
(
⊙m

i�=j a
(i)) (a(j))T (see (2.1)), which is the outer product of two vectors and, hence,

has rank at most 1.
Next, suppose allmmatrix unfoldings ofX have rank at most 1. This implies that

all mode-j vectors of X are proportional to some vector a(j), j = 1, . . . ,m. Hence,
tensor X is defined on the outer product of m linear spaces S�, with dim(S�) ≤ 1,
1 ≤ � ≤ m, and a representation (4.11) is possible. This shows that X has at most
rank 1.

5. Generic uniqueness conditions for the nth order decomposition. In
Lemma 4.6, we do not need to check all distinct 2× 2 minors of all matrix unfoldings
of the tensor to conclude that it has rank at most 1. In this section, we identify the
2× 2 minors that are redundant when checking that rank(Y) ≤ 1 in condition (4.4).
Since each 2×2 minor corresponds to a row inU(n−1), a redundant minor corresponds
to a redundant row of U(n−1). We distinguish the following ways in which a row of
U(n−1) can be redundant (i.e., can be deleted without affecting the row space). Rows
of U(n−1) can be redundant due to the following:

(I) the corresponding minor being redundant for any Y (i.e., for any (A(1), . . . ,
A(n−1)), for any I1, . . . , In−1, for any R ≥ 2, for any d), or

(II) the corresponding minor being redundant not due to (I), but due to the par-
ticular values of I1, . . . , In−1 and R ≥ 2 at hand, for any (A(1), . . . ,A(n−1)),
for any d, or

(III) the corresponding minor being redundant not due to (I) or (II), but due to
the particular (A(1), . . . ,A(n−1)) at hand, for any d.
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For R = 1 the decomposition is always unique up to permutation and scaling (except
if the tensor to be decomposed is all-zero). In this section, we assume R ≥ 2.

We define Ũ(n−1) as the matrix that is obtained by deleting redundant rows of
type (I) from U(n−1). Redundant rows of type (II) occur when Ũ(n−1) has redun-
dant rows due to the particular values of I1, . . . , In−1 and R ≥ 2 at hand, for any
(A(1), . . . ,A(n−1)). This happens when Ũ(n−1) has more rows than columns. Re-
dundant rows of type (III) occur when Ũ(n−1) is a square or horizontal matrix and
does not have full row rank. In Corollary 4.5, full column rank of U(n−1) implies
uniqueness of the decomposition. Matrix U(n−1) has full column rank if and only if
Ũ(n−1) has full column rank. This implies that Ũ(n−1) may not have more columns
than rows. Hence, the number of nonredundant minors of type (I) is a necessary
upper bound on R(R − 1)/2 for Corollary 4.5 to hold. We show that, for n = 3 and
n = 4, these upper bounds are identical to the generic uniqueness bounds (2.9)–(2.10)
obtained by De Lathauwer [6]. Moreover, we show that analogous generic uniqueness
bounds can be obtained for arbitrary order n ≥ 3. For generic (A(1), . . . ,A(n−1)),
redundant minors of type (III) do not occur by definition, and Ũ(n−1) has full column
rank if it is a square or vertical matrix. These observations also underly the proofs of
the generic uniqueness bounds (2.9)–(2.10) in [6].

In section 5.1 we present our analysis of redundant minors of type (I) for n ≥ 3.
In section 5.2 we prove that our approach yields generic uniqueness bounds, and
illustrate our result by computing the bounds on R(R − 1)/2 for n = 3, n = 4, and
n = 5. In section 5.3 some numerical examples are given.

5.1. Identifying redundant 2× 2 minors of type (I). A 2× 2 minor of the
mode-j matrix unfolding of the (n − 1)th order tensor Y in (4.3) corresponds to an
equation yA yD = yB yC, where A,B, C,D contain n − 1 indices. In the following, we
will refer to this equation as a minor as well. The mode-j matrix unfolding contains
mode-j vectors as columns. We assume (without loss of generality) that yA and yC
are entries of the same mode-j vector and, hence, have all indices except the jth index
identical. Let the n− 2 identical indices be contained in I1. Analogously, yB and yD
are entries of an other mode-j vector defined by n − 2 indices in I2. Let dif(A,D)
denote the number of different indices in A and D (i.e., indices with different values
at the same position). It follows that dif(A,D) = 1+ dif(I1, I2) ∈ {2, . . . , n − 1}.
Note that dif(A,D) = dif(D,A), and dif(A,D) = dif(B, C).

It is our goal to identify redundant 2 × 2 minors of type (I) among all distinct
minors of all n − 1 matrix unfoldings of an I1 × · · · × In−1 tensor Y when checking
that rank(Y) ≤ 1. Since we consider redundant minors of type (I), we do not assume
knowledge of which entries of Y are nonzero. We only identify minors that are redun-
dant for all possible decompositions in (4.3). Therefore, in order to identify redundant
minors we need only consider identical terms in the equations corresponding to the
minors. Here, each term is the product of two entries of Y as in yA yD = yB yC.

We obtain the number of redundant minors of type (I) as follows. First, we
partition the minors into subsets such that minors in different subsets do not have
identical terms. Next, the number of redundant minors of type (I) in each subset is
identified. Finally, the total number of redundant minors of type (I) is obtained by
adding the numbers of redundant minors in each subset. We begin this procedure by
defining the order of a minor.

Definition 5.1. A 2× 2 minor corresponding to an equation yA yD = yB yC has
order m = dif(A,D).
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A minor yA yD = yB yC of orderm is a minor of a matrix unfolding of anmth order
2×· · ·×2 subtensor ofY, where the subtensor is completely defined by (A,D). Indeed,
for each index not identical in A and D the order of the subtensor increases by one,
and the indices of all entries of the subtensor are known when (A,D) is known. More
formally, let A = {i1, . . . , in−1} and D = {j1, . . . , jn−1}. The mth order subtensor
then contains the entries y(l1,...,ln−1) with lk = ik if ik = jk and lk ∈ {ik, jk} if ik 
= jk.
The number of indices with ik 
= jk is equal to m = dif(A,D). We denote the set of
indices of the entries of the subtensor defined by (A,D) as subind(A,D). Note that
subind(A,D) = subind(D,A) and subind(A,D) = subind(B, C).

Definition 5.2. A 2 × 2 minor corresponding to an equation yA yD = yB yC
defines a 2×· · ·×2 subtensor of Y with indices of entries in subind(A,D). The order
of the subtensor equals m = dif(A,D).

The next lemma shows that minors that have different orders do not have identical
terms, nor do minors of the same order but corresponding to different subtensors.

Lemma 5.3. Let yA yD = yB yC and yÃ yD̃ = yB̃ yC̃ be two 2× 2 minors of matrix

unfoldings of an (n − 1)th order tensor Y. Let m = dif(A,D) and m̃ = dif(Ã, D̃).
The minors do not have identical terms if m 
= m̃, or if m = m̃ and subind(A,D) 
=
subind(Ã, D̃).

Proof. Having identical terms yA yD = yÃ yD̃ implies identical orders m = m̃.

Since dif(A,D) = dif(B, C) and dif(Ã, D̃) = dif(B̃, C̃), it follows that the minors do
not have identical terms if m 
= m̃.

Next, suppose m = m̃ and subind(A,D) 
= subind(Ã, D̃). Having identical terms
yA yD = yÃ yD̃ implies identical subtensors, i.e., subind(A,D) = subind(Ã, D̃). Since

subind(A,D) = subind(B, C) and subind(Ã, D̃) = subind(B̃, C̃), it follows that the
minors do not have identical terms if they correspond to different subtensors.

It follows from Lemma 5.3 that we may identify minors with identical terms for
each order and each subtensor separately. The next lemma identifies the number of
redundant minors of type (I) in each subtensor for each order.

Lemma 5.4. Let 2 ≤ m ≤ n−1. The number of mth order 2×2 minors of matrix
unfoldings of an (n − 1)th order tensor Y, that correspond to the same mth order
2×· · ·×2 subtensor of Y, equals m 2m−2. These minors contain 2m−1 distinct terms.
The number of these minors that are type-(I) redundant equals m 2m−2 − 2m−1 + 1.
The number of type-(I) nonredundant minors equals 2m−1 − 1.

Proof. The number of distinct pairs (A,D) with m = dif(A,D), which define the
same mth order 2 × · · · × 2 subtensor, equals 2m. Here, each (A,D) corresponds to
some mth order minor of a matrix unfolding of the subtensor. Since terms yA yD and
yD yA are considered identical, the number of distinct terms contained by the mth
order minors equals 2m−1. Each minor equates two of these terms. The 2 × 2m−1

mode-j matrix unfolding of the subtensor has the mode-j vectors as columns. Each
mode-j vector has two entries and corresponds to m− 1 fixed indices. An mth order
minor is obtained from two mode-j vectors with no identical fixed indices. It follows
that each matrix unfolding yields 2m−2 mth order minors in which each term appears
exactly once. Hence, the total number of minors equals m 2m−2.

Consider two distinct terms yA yD and yB yC with m = dif(A,D) = dif(B, C). Let
A = {i1, . . . , in−1} and D = {j1, . . . , jn−1}. For mth order minors yA yD = yB yC that
are obtained from the matrix unfoldings of the subtensor, the indices in B and C are
obtained from A and D by swapping the indices in one pair (ik, jk) with ik 
= jk. Each
matrix unfolding yields an mth order minor yA yD = yB yC in which a different pair
of indices is swapped. We claim that this implies that yA yD = yB yC for any (B, C)
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with m = dif(B, C). Indeed, a chain can be constructed of terms yBs yCs , s = 1, 2, . . . ,
that are equal to yA yD, such that in each step s one pair of indices is swapped in A
and D. The number of steps needed to get to yB yC is at most m− 1 (using m steps
corresponds to swapping A and D entirely, which yields an identical term).

It follows from the above that the complete set of mth order minors is equivalent
to all distinct terms yA yD with m = dif(A,D) being equal. However, since there
are 2m−1 distinct terms, we need only 2m−1 − 1 minors equating two terms to have
all terms equal. These are the type-(I) nonredundant minors. This completes the
proof.

For an mth order 2× · · · × 2 subtensor, the corresponding mth order minors can
be represented by a graph, where each node represents a distinct term and each edge
connecting two nodes represents a minor equating the terms represented by the two
nodes. In Figure 1, the graphs for m = 2, 3, 4 are depicted. For each m, the graph is
connected (i.e., all nodes can be reached by traveling along the edges), which implies
the equality of all terms. We can delete edges (i.e., redundant minors of type (I)) one
by one such that the graph remains connected. The minimal number of edges needed
(i.e., the number of type-(I) nonredundant minors) for this is equal to the number of
nodes minus one (i.e., the number of terms minus one).

By Lemmas 5.3 and 5.4, the total number of redundant minors of type (I) is equal
to

n−1∑
m=2

(m 2m−2 − 2m−1 + 1)Q(m,n) ,(5.1)

where Q(m,n) denotes the number of distinct mth order 2 × · · · × 2 subtensors of Y.
Analogously, the total number of type-(I) nonredundant minors is equal to

n−1∑
m=2

(2m−1 − 1)Q(m,n) .(5.2)

Note that half of the minors of 2nd and 3rd order are type-(I) redundant, since
m 2m−2 − 2m−1 + 1 = 2m−1 − 1 for m = 2, 3. For m ≥ 4, the number of type-(I)
redundant mth order minors is larger than half of the total number of minors.

The numbers Q(m,n) are given by

Q(m,n) =
∑
Sm

∏
j∈Sm

Ij(Ij − 1)

2

∏
j /∈Sm

Ij ,(5.3)

where the summation is over all subsets Sm of {1, . . . , n − 1} containing m distinct
elements. If m = n− 1, then we set

∏
j /∈Sm

Ij = 1.

5.2. Generic uniqueness bounds. The next theorem shows that our approach
of identifying type-(I) redundant 2 × 2 minors yields generic uniqueness bounds for
arbitrary n ≥ 3.

Theorem 5.5. Let (A(1), . . . ,A(n)), n ≥ 3, be a decomposition with generic
(A(1), . . . ,A(n−1)) and rank(A(n)) = R. Then U(n−1) has full column rank if

R(R− 1)

2
≤

n−1∑
m=2

(2m−1 − 1)Q(m,n) .(5.4)

Hence, the decomposition is unique up to permutation and scaling if (5.4) holds.
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Fig. 1. Graph representations of all mth order minors corresponding to the same mth order
2× · · · × 2 subtensor, for m = 2 (left), m = 3 (middle), and m = 4 (right).

Proof. For R = 1 the decomposition is always unique up to permutation and
scaling (except if the tensor to be decomposed is all-zero). In the following, we
assume R ≥ 2.

Consider the tensor Y in (4.3). Each row of U(n−1) corresponds to a 2× 2 minor
of a matrix unfolding of Y. Recall the classification of redundant minors/rows at the
beginning of this section. After deleting redundant rows of type (I) from U(n−1), we
obtain Ũ(n−1). For generic (A(1), . . . ,A(n−1)), redundant rows of type (III) do not
occur by definition. The nonredundant minors of type (I) can be written as a linear
system Ũ(n−1)d̃. Redundant rows of type (II) are due to the fact that Ũ(n−1) has
more rows than columns. For generic (A(1), . . . ,A(n−1)), this implies that Ũ(n−1) has
full column rank if it is a square or vertical matrix. The matrix Ũ(n−1) has R(R−1)/2
columns and its number of rows is given by the right-hand side of (5.4). Hence, (5.4)
implies that Ũ(n−1) generically has full column rank. Since Ũ(n−1) is obtained from
U(n−1) by deleting redundant rows, Corollary 4.5 completes the proof.

Next, we compute and illustrate the generic uniqueness bound (5.4) for n = 3, 4, 5
and show that the bounds for n = 3, 4 coincide with the generic uniqueness bounds
(2.9)–(2.10) of [6].

The bound for n = 3. Here, Y is an I1 × I2 matrix Y. The n− 1 = 2 matrix
unfoldings of Y are Y itself and YT . Each 2 × 2 minor of Y has order 2 and is
identical to a 2 × 2 minor of YT . Hence, only the distinct 2 × 2 minors of Y are
type-(I) nonredundant. Their number is given by

Q(2,3) =
I1(I1 − 1)I2(I2 − 1)

4
,(5.5)

which equals the right-hand side of (5.4) and is identical to the generic uniqueness
bound (2.9) of [6]. The graph representing the two identical 2nd order minors of a
2× 2 subtensor is depicted in the left-hand panel of Figure 1.

The bound for n = 4. Here, Y is an I1 × I2× I3 tensor. We denote the I1 × I2
frontal slices of Y as Yk, k = 1, . . . , I3. The first and second matrix unfoldings are
given by [Y1|, . . . , |YI3 ] and [YT

1 |, . . . , |YT
I3
], respectively. Any 2× 2 minor of Yk has

order 2 and is identical to a 2× 2 minor of YT
k , which yields

I3
I1(I1 − 1)

2

I2(I2 − 1)

2
(5.6)
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identical minors. Analogous cases of identical minors occur between the first and
third and between the second and third matrix unfoldings of Y. The total number
of these identical minors is equal to the number of type-(I) (non)redundant minors of
order 2. This number is given by the first term of (5.2), which equals

Q(2,4) = I1
I2(I2 − 1)

2

I3(I3 − 1)

2
+ I2

I1(I1 − 1)

2

I3(I3 − 1)

2
(5.7)

+I3
I1(I1 − 1)

2

I2(I2 − 1)

2
.

Next, we identify type-(I) redundant minors of order 3. We consider an arbitrary
2× 2× 2 subtensor of Y with frontal slices[

a b
c d

]
and

[
e f
g h

]
.(5.8)

The 3rd order minors corresponding to this subtensor are as follows:

ah = cf , bg = de (matrix unfolding 1) ,(5.9)

ah = bg , cf = de (matrix unfolding 2) ,(5.10)

ah = de , bg = cf (matrix unfolding 3) .(5.11)

There are four distinct terms in (5.9)–(5.11) and they should all be equal. Only three
of the six equations are needed for this. The graph representing the six minors of
order 3 of a 2× 2× 2 subtensor is depicted in the middle panel of Figure 1. The total
number of type-(I) (non)redundant minors of order 3 equals the second term of (5.2),
which is equal to

3 Q(3,4) = 3
I1(I1 − 1)

2

I2(I2 − 1)

2

I3(I3 − 1)

2
.(5.12)

The total number of type-(I) (non)redundant minors equals the sum of (5.7) and
(5.12), and can be rewritten as

I1(I1 − 1)

4

I2I3(I2I3 − 1)

2
+

I2(I2 − 1)

4

I1I3(I1I3 − 1)

2
(5.13)

+
I3(I3 − 1)

4

I1I2(I1I2 − 1)

2
,

which is half of all distinct 2 × 2 minors of the three matrix unfoldings of Y, and
equals the right-hand side of (5.4). Moreover, (5.13) can be rewritten as the generic
uniqueness bound (2.10) of [6]. Setting I3 = 1 yields the bound for n = 3.

The bound for n = 5. Here, Y is an I1 × I2 × I3 × I4 tensor and has n− 1 = 4
matrix unfoldings. Using the analyses for n = 3 and n = 4, we can immediately see
the number of type-(I) (non)redundant minors of orders 2 and 3. Indeed, analogous
to (5.7) the number of type-(I) (non)redundant minors of order 2 is given by

Q(2,5) = I1I2
I3(I3 − 1)

2

I4(I4 − 1)

2
+ I1I3

I2(I2 − 1)

2

I4(I4 − 1)

2
(5.14)

+ I1I4
I2(I2 − 1)

2

I3(I3 − 1)

2
I2I3

I1(I1 − 1)

2

I4(I4 − 1)

2

+ I2I4
I1(I1 − 1)

2

I3(I3 − 1)

2
+ I3I4

I1(I1 − 1)

2

I2(I2 − 1)

2
.
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Analogous to (5.12), the number of type-(I) (non)redundant minors of order 3 is given
by

3 Q(3,5) = 3 I1
I2(I2 − 1)

2

I3(I3 − 1)

2

I4(I4 − 1)

2
(5.15)

+ 3 I2
I1(I1 − 1)

2

I3(I3 − 1)

2

I4(I4 − 1)

2

+ 3 I3
I1(I1 − 1)

2

I2(I2 − 1)

2

I4(I4 − 1)

2

+ 3 I4
I1(I1 − 1)

2

I2(I2 − 1)

2

I3(I3 − 1)

2
.

It remains to identify type-(I) redundant minors of order 4. Let an arbitrary 2×2×2×2
subtensor have frontal 2× 2× 2 tensors[

a b e f
c d g h

]
and

[
i j m q
k l o p

]
.(5.16)

The 4th order minors corresponding to (5.16) are as follows:

ap = cq, bo = dm, el = jg, fk = hi (matrix unfolding 1),(5.17)

ap = bo, cq = dm, el = fk, jg = hi (matrix unfolding 2),(5.18)

ap = el, bo = fk, cq = jg, dm = hi (matrix unfolding 3),(5.19)

ap = hi, bo = jg, cq = fk, dm = el (matrix unfolding 4).(5.20)

There are eight distinct terms in (5.17)–(5.20) and they should all be equal. It can
be seen that only 7 of the 16 minors are needed for this. The graph representing the
16 minors of order 4 of a 2× 2× 2 × 2 subtensor is depicted in the right-hand panel
of Figure 1. The total number of type-(I) redundant minors of order 4 equals

9 Q(4,5) = 9
I1(I1 − 1)

2

I2(I2 − 1)

2

I3(I3 − 1)

2

I4(I4 − 1)

2
.(5.21)

The total number of type-(I) redundant 2× 2 minors equals the sum of (5.14), (5.15),
and (5.21). Since for each 2×2×2×2 subtensor we have obtained 9 type-(I) redundant
minors of 16, the total number of type-(I) redundant minors is larger than half of all
distinct 2 × 2 minors of the four matrix unfoldings of Y. The generic uniqueness
bound (5.4) is formed by the total number of type-(I) nonredundant minors. The
total number of minors is given by

I1(I1 − 1)

2

I2I3I4(I2I3I4 − 1)

2
+

I2(I2 − 1)

2

I1I3I4(I1I3I4 − 1)

2

+
I3(I3 − 1)

2

I1I2I4(I1I2I4 − 1)

2
+

I4(I4 − 1)

2

I1I2I3(I1I2I3 − 1)

2
.(5.22)

Subtracting the total number of type-(I) redundant minors from (5.22) yields the
uniqueness bound (5.4), which can be written as

R(R− 1)

2
≤ I1I2I3I4

16
(7 I1I2I3I4 − I1I2I3 − I1I2I4 − I1I3I4 − I2I3I4

− I1I2 − I1I3 − I1I4 − I2I3 − I2I4 − I3I4 − I1 − I2 − I3 − I4 + 7) .(5.23)

Setting I4 = 1 yields the bound for n = 4. Setting I3 = I4 = 1 yields the bound for
n = 3.
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5.3. Numerical examples. We have programmed a MATLAB file that, for
particular (A(1), . . . ,A(n−1)), constructs the matrix U(n−1) and computes the bound
on R(R− 1)/2 (right-hand side of (5.4)). For randomly sampled entries of (A(1), . . . ,
A(n−1)) from the standard Gaussian distribution, and various values of R, n, I1, . . . ,
In−1, we construct U(n−1), determine its rank, and compare it with the bound on
R(R− 1)/2.

For n = 4, I1 = 2, I2 = 3, I3 = 4, and R = 16, we have equality in (5.4).
Indeed, both the left-hand side and right-hand side are equal to 120. The matrix
U(3) has 240 rows and 120 columns of which 120 rows are redundant. For random
(A(1),A(2),A(3)), we get rank(U(3)) = 120 indeed.

Next, we set n = 5, I1 = 2, I2 = 3, I3 = 4, and I4 = 2. The bound (5.4)
on R(R − 1)/2 equals 636. This implies that R can be 36 at most. For random
(A(1), . . . ,A(4)) and R = 36, we get U(4) with 1308 rows and 630 columns. The rank
of U(4) is 630. For R = 37, the matrix U(4) has 666 columns, but its rank equals 636.
Hence, U(4) does not have full column rank in this case.

Finally, we set n = 6, I1 = 2, I2 = 3, I3 = 2, I4 = 2, and I5 = 3. The bound (5.4)
on R(R − 1)/2 equals 1656, which implies that R can be 58 at most. For random
(A(1), . . . ,A(5)) and R = 58, we get U(5) with 3546 rows and 1653 columns. The
rank of U(5) is 1653. For R = 59, the matrix U(5) has 1711 columns, but its rank
equals 1656.

For comparison, in the three examples above the largest values of R satisfying the
generalization (1.3) of Kruskal’s uniqueness condition (with kA(n) = R and kA(j) =
min(Ij , R) = Ij , j ≤ n − 1) are 6, 7, and 7, respectively. This illustrates the large
improvement of the generic uniqueness bound (5.4) with respect to (1.3). In Table 1,
the examples are summarized.

Table 1

Examples of two generic uniqueness bounds on R for random decompositions (A(1), . . . ,A(n))
with rank(A(n)) = R.

n Size tensor Bound on R Bound on R
from (1.3) from (5.4)

n = 4 2× 3× 4× I4, I4 ≥ R R ≤ 6 R ≤ 16

n = 5 2× 3× 4× 2× I5, I5 ≥ R R ≤ 7 R ≤ 36

n = 6 2× 3× 2× 2× 3× I6, I6 ≥ R R ≤ 7 R ≤ 58

6. Discussion. In this paper, we have generalized various existing uniqueness
conditions for the 3rd and 4th order decomposition to the nth order decomposition
(A(1), . . . ,A(n)), for arbitrary n ≥ 3. All uniqueness conditions assume that (at least)
one of the component matrices A(j) has rank R. The sufficient uniqueness condition
of Corollary 4.5 and the generic uniqueness condition of Theorem 5.5 are easy to
check.

The examples in section 5.3 illustrate the large improvement of the generic unique-
ness condition with respect to the generalization (1.3) of Kruskal’s uniqueness condi-
tion. Stegeman [34] has shown that for n = 3 and kA(n) = R, Kruskal’s uniqueness
condition (1.2) implies that U(2) has full column rank. Hence, for n = 3 the latter
condition is less restrictive for any (A(1),A(2)). We conjecture that for n ≥ 3, the
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same is true for the generalization (1.3) of Kruskal’s condition and U(n−1) having full
column rank.

Stegeman, Ten Berge, and De Lathauwer [35] also consider the decomposition
(A(1),A(1),A(3)) with symmetric slices and A(3) having rank R. Analogous to Corol-
lary 4.5, the decomposition is unique if U(2) has full column rank, where the latter
is constructed from (A(1),A(1)). As observed in [35], the symmetry introduces more
type-(I) redundant rows in U(2) than are identified in section 5.1. The following
expression for the number of type-(I) nonredundant rows is conjectured by [35]:

I1(I1 − 1)

4

(
I1(I1 − 1)

2
+ 1

)
−
(

I1
4

)
,(6.1)

where the last term only appears if I1 ≥ 4. In future research, we would like to
identify redundant rows of U(n−1) for nth order decompositions with various forms
of symmetry (i.e., with some of A(1), . . . ,A(n−1) identical and A(n) of rank R).
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